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Highlights

We define a quantity “excess” ε(G) for any undirected (multi)graph G in terms of the
number of spanning trees and a linear-algebraic optimization problem, which satisfies

ε(G) = 0, if G is planar,

ε(G) ≥ 18, if G is nonplanar.

This characterization gives a certificate of planarity that can be easily verified by
computing the determinant of a sparse matrix and counting spanning trees.

We show that any subdivision of K3,3 or K5, two important nonplanar graphs,
underperforms the best planar graph with the same number of edges in some
linear-algebraic sense.

Our linear-algebraic connection gives an upper bound on the maximum number of
spanning trees in a planar (multi)graph with a fixed number of edges, which
matches the current best upper bound.

Definitions
Given a matrix M ,

we say that M is an incidence submatrix if each row of M has at most one 1, at
most one −1, and all other entries 0.

Given a connected graph G with an orientation D,

we use τ (G) to denote the number of spanning trees in G;

a truncated incidence matrix trun(D) of G is the incidence matrix of D with an
arbitrary column removed;

let maxdet(G) be the maximum determinant of a square concatenation [M |N ] such
that M is a truncated incidence matrix of G and N is an incidence submatrix;

define the excess of G to be ε(G) := τ (G)−maxdet(G).

Proposition 1: Excess is nonnegative
For any connected graph G, we have ε(G) ≥ 0.

Theorem 2: Planarity criterion via excess
For any connected graph G,

ε(G) = 0, if G is planar,

ε(G) ≥ 18, if G is nonplanar.

Lemma 3: Excess is zero for planar graphs
Let G be a connected planar graph. Let D be an orientation of G with directed planar
dual D∗. Then ∣∣∣det [ trun(D) trun (D∗)

]∣∣∣ = τ (G),

where the ith rows of trun(D) and trun(D∗) correspond to the same arc.

A planar example

(a) A connected planar digraph and its directed
planar dual, each with 5 edges, where the two
circled vertices are the ones truncated in their
truncated incidence matrices, respectively.



−1 0 0 1 0
1 −1 0 1 0
0 1 0 1 −1
0 0 1 0 −1
0 1 −1 0 −1



(b) A 5× 5 matrix whose determinant has
absolute value equal to the number of
spanning trees in the underlying undirected
graph.

Lemma 4: Merge-cut lemma
For any connected graph G = (V,E) and non-bridge e ∈ E, ε(G) ≥ ε(G/e) + ε(G \ e).

Lemma 5: Excess is at least 18 for nonplanar graphs
For any connected nonplanar graph G, we have ε(G) ≥ 18.

Two important nonplanar graphs

(a) ε(K3,3) = 18. (b) ε(K5) = 25.

Theorem 6: Wagner
A graph is nonplanar if and only if
it can produce either K3,3 or K5

by a sequence of edge contractions
and deletions.

Definitions
Given a matrix P ,

we say that P is a bi-incidence matrix if P is the concatenation [M |N ] of two
incidence submatrices.

Given m ∈ N,
let τm be the maximum number of spanning trees in a planar graph with m edges;

let ∆m be the maximum determinant of an m×m bi-incidence matrix.

Theorem 7: Upper bound
For all m ∈ N, we have τm ≤ ∆m ≤ δm, where δ ≃ 1.8393 is the unique real root of the
equation x3 − x2 − x− 1 = 0.

Remarks on Theorem 7

The question of determining the values of τm was initially asked by [Kenyon 1996]; a
lower bound of 1.7916m is known, achieved by square grid graphs.

The second inequality ∆m ≤ δm can be proved by noting that, w.l.o.g., any square
bi-incidence matrix has a column with at most three nonzero entries, and by
multilinearity of determinants. The proof is inductive and uses the recurrence
relation ∆m ≤ ∆m−1 +∆m−2 +∆m−3.

This matches the current best upper bound by [Stoimenow 2007], who used a
knot-theoretic argument.

m 1 2 3 4 5 6 7 8 9 10

τm 1 2 3 5 8 16 24 45 75 130

∆m 1 2 3 5 8 16 24 45 75 130

Table 1. τm and ∆m for m = 1, . . . , 10.

Conjecture 8
For all m ∈ N, we have τm = ∆m.

Conjecture 9: Nonplanar graphs underperform planar graphs
For any connected nonplanar graph with m edges, we have maxdet(G) ≤ τm.

Proposition 10
Conjecture 9 implies Conjecture 8.

Theorem 11: Subdiv. of K3,3 and K5 underperform planar graphs

For any subdivision G of K3,3 or K5 with m edges, we have maxdet(G) ≤ τm.

Edge relocation method for subdivisions of K5

Relocating one edge in K5 to coincide with another edge results in a planar graph.

Future directions

Does Conjecture 8 hold? What are the exact values of τm and ∆m asymptotically?

Can the observation that many nonplanar graphs contain several copies of K3,3 and K5

as minors be exploited to strengthen Lemma 5?

Can the edge relocation method be generalized to a broader class of nonplanar graphs?

Faster algorithms for counting spanning trees and testing planarity?
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